LC 329 Longest Increasing Path in a Matrix(H)

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

边界判断 保证数组有行 否则返回0;

解题思路 DFS + Memorize + DP

  1. 给每个格子做 DFS 搜索

  2. 比较4个方向并且跳过超出边界或者比较小的部分

  3. 从每个格子中找出方格的最大值

  4. Use matrix[x][y] <= matrix[i][j] so we don't need a visited[m][n] array。

  5. 关键点是要记录下距离,以为会被重复访问到

public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

public int longestIncreasingPath(int[][] matrix) {
    if(matrix.length == 0) return 0;
    int m = matrix.length, n = matrix[0].length;
    int[][] cache = new int[m][n];
    int max = 1;
    for(int i = 0; i < m; i++) {
        for(int j = 0; j < n; j++) {
            int len = dfs(matrix, i, j, m, n, cache);
            max = Math.max(max, len);
        }
    }   
    return max;
}

public int dfs(int[][] matrix, int i, int j, int m, int n, int[][] cache) {
    if(cache[i][j] != 0) return cache[i][j];
    int max = 1;
    for(int[] dir: dirs) {
        int x = i + dir[0], y = j + dir[1];
        if(x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
        int len = 1 + dfs(matrix, x, y, m, n, cache);
        max = Math.max(max, len);
    }
    cache[i][j] = max;
    return max;
}

Last updated

Was this helpful?