Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab",
Return
[
["aa","b"],
["a","a","b"]
]
-求所有答案,首先排除动态规划,应该是DFS (Palindrome Partitioning II 求个数才是动归)
-遇到要求所有组合、可能、排列等解集的题目,一般都是DFS + backtracking
-首先传入s="aab" path=[] res = [], 首先切割出"a"(然后是"aa" "aab" ...),然后判读它是不是回文串:
如果不是,直接跳过
如果是,则此时剩余的 s="ab", path += ["a"]
写入res的判断是,当s=""时,记录结果
-优化:可以通过用DP来计算任意s[i:j]是否是回文,并保存结果,再执行DFS,如果发现某条string不是回文,就可以直接退出,从而减少计算量
Copy public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if (s == null || s.length() == 0) return res;
partition(res, new ArrayList<>(), s);
return res;
}
private void partition(List<List<String>> res, List<String> list, String s) {
if (s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
//backtrack 方式查找回文
for (int i = 0; i <= s.length(); i++) {
String front = s.substring(0, i);
//当前s(0,i) 是否是回文
if (isPalindrome(front)) {
list.add(front);
// 递归判断 剩余s(i) 内的回文组合
partition(res, list, s.substring(i));
list.remove(list.size() - 1);
}
}
}
//判断字符串是否是回文
private boolean isPalindrome(String s) {
if (s == null || s.length() == 0) return false;
int lo = 0, hi = s.length() - 1;
while (lo < hi) {
if (s.charAt(lo) != s.charAt(hi)) return false;
lo++;
hi--;
}
return true;
}